

## DCU-003-1131003

Seat No. \_\_\_\_\_

## M. Sc. (Biotechnology) (Sem. I) (CBCS) Examination

**August - 2022** 

BT-103: Molecular Biology

(New Course)

Faculty Code: 003

Subject Code: 1131003

Time :  $2\frac{1}{2}$  Hours] [Total Marks : 70

## **Instructions:**

- (1) Figures at right side indicates marks of the question.
- (2) Attempt any five.
- 1 Answer the Questions: (2 mark each)
  - (1) Robertsonian mutation involves
    - (a) Joining of 2 same short arms
    - (b) Joining of 2 same long arms
    - (c) Joining of 2 different short arms
    - (d) Joining of 2 different long arms
  - (2) How long is the okazaki fragment in E.coli DNA replication?
    - (a) 100 Nucleotides
- (b) 500 Nucleotides
- (c) 1000 Nucleotides
- (d) 200 Nucleotides
- (3) The nick Translation property is present in .........
  - (a) DNA POL I
- (b) DNA POL II
- (c) DNA POL III
- (d) Both I and II
- (4) Prader-Willi Syndrome is an example of
  - (a) Deletion
- (b) Inversion
- (c) Aneuploidy
- (d) Translocation
- (5) During transcription, if the nucleotide sequence of the DNA strand that is being coded is ATACG, then the nucleotide sequence in the mRNA would be
  - (a) TCTGG
- (b) UAUGC
- (c) UATGC
- (d) TATGC

- (6) Which one of the following pairs is correctly matched with regard to the codon and the amino acid coded by it?(a) UUA-Valine(b) AAA-Lysine
  - (c) AUG-Cysteine (d) CCC-Alanine
- (7) The DNA is digested with bacterial enzyme micrococcal nuclease. After digestion the nucleotide chain obtain will be of .............
  - (a) 128 bp (b) 146 bp (c) 56 bp (d) 200 bp
- 2 Answer the following: (two marks each)
  - (1) Which enzyme can be described as a DNA-dependent RNA polymerase?
  - (2) An organism has a G + C content of 64% in its DNA. What are the percentages of A, T, G, and C?
  - (3) How nucleosides differ from Nucleotides?
  - (4) What are okazaki fragments?
  - (5) Which is the first mRNA codon to mostly specify an amino acid?
  - (6) Which enzyme synthesizes t-RNA?
  - (7) Name the enzyme which acts as eukaryotic reverse transcriptase.
- 3 Answer the following: (7 marks each)
  - (a) Define Multi gene Family. Explain with examples.
  - (b) Explain the mechanism of prokaryotic and Eukaryotic Translation.
- 4 Answer the following: (7 marks each)
  - (a) Define DNA binding domain. Explain with the examples.
  - (b) Telomerase solves the end replication problem. What is the problem and how it solves?

- **5** Answer the following: (7 marks each)
  - (a) Define splicing. Explain it in detail.
  - (b) Explain the role of t RNA and amino acyl tRNA Synthatase in peptide synthesis.
- 6 Answer the following: (7 marks each)
  - (a) Explain one Histones modification which promotes gene expression and one which inhibits it.
  - (b) Give a detail account an DNA repair.
- 7 Answer the following: (7 marks each)
  - (a) What do you understand about the regulation of gene expression by environment factors. Explain?
  - (b) Give a detail account of Prokaryotic RNA polymerase.
- 8 Answer the following: (7 marks each)
  - (a) Explain the initiation step for the synthesis of pre mRNA.
  - (b) Define Operon . Give a detail account of tryptophan operon.
- **9** Answer the following: (7 marks each)
  - (a) Write a note on Post translational modifications
  - (b) Explain the genome organization of Prokaryotes.
- 10 Answer the following: (7 marks each)
  - (a) Define DNA binding domain. Explain with the examples.
  - (b) Give the detail account of Giant Chromosomes.